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ABSTRACT

A theoretical study of ice crystal/shock layer interaction has been
carried out in order to assess the relative kinetic energy of an ice crystal
upon impact with a hypersonic vehicle. A dynamic fracture criterion has
been developed which predicts the size of the ice crystal fragments formed
at the vehicle bow shock. An analysis of the ice crystal breakup predicts
that the outer fragments continue to shatter and prevent the shock layer
gas from penetrating the fragment cloud. The fragment cloud is then
treated as a deformable fluid drop, and the reduced impact velocity due
to lateral spreading is determined.
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I. IENTRODUCTION

As a supersonic or hynersonic vehicle passes through a real atmos-

phere, it may encounter relatively large clouds of dust, rain or ice. A

great deal of attention has previously been given to the problems of dust 1 }

and rain( ), but not until recently has significant effort been devoted to

the interaction of ice crystals with the shock layer. Wu { 1Z) has studied the

melting and vaporization of an ice crystal in a hypersonic shock layer and

demonstrated a significant reduction in particle size and impact velocity

for ice crystals initially of the order of 101Adiameter. Larger crystals

were ralatively unaffected by melting and vaporization. In the same report,

Teare( 12) demonstrated that ice crystals may shatter at the vehicle bow-

shock. This introduces the possibility that the fractured ice crystal or

"fragment cloud" may deform %s it passes through the vehicle shock layer.

This deformation will be lateral to the relative gas velocity and will tend to

increase the drag area of the fragment cloud. Hence, the velocity of the

fragment cloud will decrease more rapidly than that of a rigid particle, and

the velocity with which the fragment cloud impacts the vehicle may be signi-

ficantly lower than that with which a "rigid" ice crystal would impact the

vehicle.

To study this phenomenon we must first develop a criterion for the

dynamic fracture of the ice crystal at the vehicle shock. This is carried out in

section II. The problem of ice crystal breakup is addressed in section I,

and in section IV we examine the dynamics of the fragment cloud and demon-

strate the reduced impact velocity due to the lateral deformation of the cloud.
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The dynamic shattering criterion used in section I is subject to the experi-

mental verification. However, the dynamics of the fragment cloud are insen-

sitive to the actual shattering proctes and the results of section IV are only
weakly dependent on the dynamic shattering criterion.

i
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II. INITIAL FRACTURE OF THE ICE CRYSTAL

A) Conditions for Fracture

A schematic of an i , !rystal enteritg a hypersonic shock layer is

given in Fig. 1. The ice crystal enters the vehicle shock layer with

velocity Uw, finds itself moving with supersonic velocity relative to the

shock layer gas and thereby generates its own bow shock or crystal shock.

Only the normal component of the shock Mach number is important for the

pressure loading on the crystal. The pressure loading as a function of normal

Mach number M can be calculated with the aid of Fig. Z. The subscript xx

represents conditions upstream of the vehicle shock and subscript y denotes

conditions in the vehicle shock layer. The Mach number of the ice crystal

-relative to the shock layer gas is

V -v
M = =M y

y y

which may be determined from the normal shock tables. The pressure P.

is the total pressure behind a shock of Mach number MI moving into a gas

of pressure Py. Thus, Ps may also be obtained from the normal shock

relations. The static yield criterion13indicates that fracture will occur in the

vehicle shock layer if the radius of Mohr's circle, (P s - P ) / Z, is greater than
y

Ss, the yield stress of ice in shear.

Ps'P y >  
s o

If the speed of sound in the ice, ao, is greater than Vx, the ice crystal will

- 3.
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shatter upstrearn of the vehicle shock if

P -P >25.S 1 - 5

This fracture criterion is illustrated in Fig. 3 and demonstrates that most

hypersonic vehicles will shatter ice crystals through the bow .hock wave -

ice crystal interaction process outlined above. However, this conclusion is

based ou the application of a static yield criterion. We must proceed to

develop a model for the dynamic fracture of a brittle material under impulsive

loading.

B) Dynamic Fracture Criterion

Ice crystals passing the bow shock wave of a hypersonic vehicle are

subject to very short duration impulsive loads, and a consistent dynamic yield

criterion must be established in order to analyze the nhattering problem.

First, we define three different times relevant to dynar c loads. T D is the

duration of the applied load, TT is the transient time for application of the

load (-'T S TD) and -rR is the response time or the time required for a

specimen of length L to know a load has been ipplied. Clearly, TrR = L/ao,0

where ao is the speed of sound in the specimen.

By definition, static loading occurs when T >> 1R and the static yield

stress (a) is the appropriate measure of the maximum load that the specimen

can tolerate without plastic deformation or failure. Clearly, when T << 'R'

a dynrnic yield stress (a D) is a necessary measure of failure. When

T T 0 (,R) we assert hat aD 0 (a1 ).

-6-
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One exampl, of a situation where Ir T = Ir R is a mnonochromatic

stress wove. Let X be the longitudinal stress (tension or compression)

in a stress wave

Xx=Ak sin (w kaot) cos (-ffkx).

For an element of length lk, TR = T (&L). Therefore, failure occurs

When A.k = 0 (cs). An alternate way of looking at the stress wave in in

terms of the particle velocities, U X The momentum equation

bt -

yie dsU ao Ak cos (nka t) sin (rrkx)
x E 0

where E is young's modulus relating stress (c) to strain (e) (Y= Ee and

a 0 = 4UP). If we interpret U. as a series of elements of length I1/k

(14)
colliding with velocity ao A,,/E, then impact theory indicates that failure

occurs when the impact velocity exceeds C (e 9 0). Since aa= Ees, this

criteria reduces tW A k=0 (a s)

Having developed a rational argument for applying a static yield

criterion to the monochromatic stress wave, we now make the following

bold hypothesis which, while plausible, can be justifi'wd only if the subsequent

conel i~ons airee vdith e.-per-Imrent.



HYPOTHESIS: Dynazmic Yield Stress may be obtained by Fourier

expanding the applied load and applying the monochromatic

yield criterion to each wave. Failure occurs when A Q 0

where Q is 0 (1) and is to be determined by applying this

technique to an impulsively loaded specimen.

The primary argument ag.inst this hypothesis is that the single monochro.

matic wave may in no way represert the total stress w ich is the sumi of all

the waves. While this is true, one could assert that a specimen of length L

would be fractured by its primary mode and that a small segment (length L)

of the specimen would be shattered by the primary mzde associated with the

length I, even though the primary mode of the small segment would be a

higher order mode of the larger specimen. Hence, it is within this context

that we apply the monochromatic yield criterion to each Fourier component

of a dynamic load. While we cannot theoretically conirm the basic hypothesis,

we proceed with the intention of verifying it through empirical confirmation

of the conclusions which are subsequent to the basic hypothesis.

C) One -Dimensional Fracture

Let us first examine the present theory by applying it to the problem

of a one-dimensional slab of thickness 6 that is impulsively loaded on one

side with pressure P for time )" The load is impulsively removed at the

end of that time interval (,rD "< b/as ) . A schematic of the Loading and un-

loading waves in (x, t) coordinatea is given in Fig. 4. If we stand at sorre

-9-
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position x between a 0 /2 and b-a oTD/2, the time dependent force on an

element is shown in Fig. 5. The Fourier expansion of XX is given by

= a n I a sin .)

n

Ths dynamic fracture criterion indicates that the primary mode (u- 1) will

fracture the specimen if

4P 2 .ra ] P a 
Zb b aQ~

or

Hence,the dynamic yield stress D is given by

aD ( ra ) a a for TD < < b/a°

and illustrates that 0D is inversely proportional to -"D and indeed is in excess

of a provided that 0 is of order unity.

To determine the value of 0. let us again take a one -dimensional slab

and impulsively load it in tension (T) for all time. The wave diagram is

illustrated in Fig. 6 and the pressure-time history is shown in Fig. 7. The

corresponding Fourier series representation of the dynamic load is given

by

-I
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An impulsively applied load creates twiv-e the strain as a slowly applied

* load. Thus, the impulsive load will fracture th. specimen when T is

only a /Z. Equating the amplitude of the n = I mode of the above expansion

to Go, we determine

ID Tr

Note that we have obtained 0 by comparing the amplitude of standing waves.

Any subsequent use of the value rd 0 must be made with standing w gves. A

completely consistent approach could be developed using traveling waves but

the values of Q would differ by a factor of 2.

Having developed a criterion for fracture of a dynamically loaded

specimen, let us now examine shattering. Cnnst-der a one-dimensional slab

impulsively loaded on one side and held constant for all time. This is the

one -dimensional analogue of the ice crystal loading at the bow shock of a

hypersonic vehicle. The Fourier ezpaesion of the dynamic load is expressed

as

Cos - sin -+ Pa-x/nI b /=x
n

Suppose P a, Then, not only can the n 1 mode fracture the specimen,

but the n = m aode can break trisa fragments and so on up to the critical

-153-



value of n (ac) wher. the nth mode is just strong enough to fracture the

specise. This vlue of n is determined by

2P
a= 

C

or p

c -

and the corresponding size of the fragrnent (1) of the n mode is giveu by

cC

IL -

These are the largest fragments that can survive the applied pressure P 5

Smaller fragments can exist due to the shattering by other modes. That is,

the u th mode fractures the specimen at values of x/b equal to

x 1 3 5 7 -nc

C C C C C

The n -i mode fractures th. specimen at

Z (n -1) - 1s - 3 5 7 c

b Zlnc-l)'Z (n-i)' (n-i)' 2 (nc-) - - - Z (no - 1)

The largest fragment is then

Ax 3 1 1
b n 2 n- nC C

-16-



wheroas the sma'iest is

Ax I 1 1

b Z (n .) Zn Zn 2

. C

Therefore, for one-dimensional shattering, we have determined that the

fragment sizes range from the smallest

Awin = J b

to the largest, I
max .± 2

Since the ice crystal erosion problem is dominated by the large crystals, i

we shall study the two-dimensional and three-dimensional shattering

problems with the understanding that the characteristic fragment size refers

to the largest fragments, and that srnz.ller fragments can exist.

D. High Frequency Limitations

The results of section C) places no upper limit on the frequency of the

fracturing wave or, equivalently, place no lower limit on the size of the

(16)
shattered fragments. It is well known that the minimurnm wave length

that can exist in a solid is of the order of the lattice spacing (s) and the

maximum frequency is the photon frequency w
P

p a

-17-



whe re a is the speed of sourd in the specimen. Tbese concepts way be in-

cluded in the shattering analysis by adding some "inertia" to the stress tensor.

Assumaing
a-E(e + 

where & is a-and both E and P are constants, the momentum equation

becomes 2bZ b U 63U

bt? = 

t

Solving the initial value problem,

U (x, t) =sin e-it

for X real and w complex we see that propagation cannot exist above the fre-

quency 2/ or below the wavelenagth a . Hence, it follows that
0

1 a

p 0

Solving the boundary value problem,

_X I1 i ( t. -Znx/X)
UJ(x,t) = • e

for w,X t.-id the decay depth b all real, we obtain

2

2 a a
lU 0 . 0

where 6 approaches s as w approaches w p

For an applied load of irbitrary frequency u, caution must be tak:n

to insure that E. > L before using the proposed dynamic yield criterion since

it omit' skin depth effects, For an impulsively loaded specimen of length L,

-18-



thi frequency corresponding to the n'th mode is

na
oWL

Validity of the shattering analysis requires

e

or L > n 2 s

or I > ns
max

and A.>.
mIn

Thus, the ice crystal shattering analysis is valid down to fragment sizes of

the order of s. High frequency effects do not influence the shattering by an

inpulsively applied load but maybecorne important for high frequency loads

and large test specimens.

E. Two-Dimensional Fracture

The one -dimensional shattering analysis is readily extended to two

dimensions by expanding the applied load into a double Fourier series.

Suppose we have a two-dinensional ice crystal with pressure P. impulsively

applied at one end. The applied preesure rny be expanded as a sqliare wave

over the lateral dimension (a) of the ice crystal

2 PI -) (Cos - r)m("

P' (Y) =- i
rn

The one-dimensional plane wave solution was given by

n Ti b b
n

-19-



where a0was 0and Ps (y) was constant. Thuis, the plane wave represen-

tation of an cend loaded two, -dimensional ice crystal is given by

rn U

or, in standing wave form

XX -2 Ps (1 -Cogr M )(03 'Taot)

b -a b a

Similarly, we take a two-dimensional specimen i-nd impulsively load it in

tension T for all time.

X E 2T (1-cosm rr) cos nr-l) __

rn n mn iT

n TTx n'rX (
IC bab a

Just am in the one -dimensional case, failure occurs when the tension 7

exceeds one half of ita static limit. Therefore, the coefficient relating the

wave amplitude to the yield stress is

4 4

The value of Z2D is not rest iicted to a particular failure mode. The

-20-



maximum tensiou T may be limited by either shear or tension. In obtaining

Eq. (4), it was stated only that the impulsive load is twice as strong as the

static load. The primary mode, whose amplitude is 8 T/M, , will break when

T is "I/2". Hence, QZD is 4/w.

For an axial load such as that applied to the ice crystal, Mohr's circle

predicts that the maximum shear (S) occurs at

Y= + a rConstant

and ir of strength X

2

E am~iniug Eq. (3), we see that the strength of the (rn, n) mode is a maximum

a long

y Z:+ (~($+ constant

Therefore, the natura.l mode selection that would maximize the shear stress

on the wave is

b n

Under the ccnstraint of b k a, hence n k m, the shear stress on the two-

dimensional ice crystal may be expressed as

rn r-COS X n)a

-21-



The dyammic fracture criterion predicts failure for the critical value of m,

denoted by nn. Equating the wave amplitude of S to QD Ss

S a SQZD for(b > a)
rnZ~tb

c

the value of rm becomesc

Note: for nr c 1, we must use the one-dimensional reslilts of Section C,

otherwise the lateral dimension of the fragment is greater than a. The

results are continuous if it is assumed that the maximum axial stress is

limited by the shear mode (a = 2 S ). The characteristic fragment size

is a/m orc

(ZD -Ssr or (Ita).

and (6)

A ID P b for Z s- a- or (I > a).

Hence, the two-dimensional shattering analysis is appropriate only if the

fragment size is less than the small dimension of the initial crystal. Other-

wise, shattering is one-dimensional along the length of the specimen.

F. Three-Dimensional Shattering

Suppose that we now have a three -dimensional crysal of lngth b

Z_



aid base area a2 (b k a). Expanding the applied force in a triple Fourier

series, the amplitude of the wave would be inarsely proportional to the mode

number cubed. p

A - -
n. . q Yumq

where
n - a

a a

or P aA s
An, m, q ' b

Applying the dynamic fracture criterion to the amplitude of the wave, we

obtain
Pa

SS3b
inbC

:; The fr $gment size is a/n, or
c

£3D-- -zs\'' (a2bQ f ( -5  b'\ (7)

where the constant was chosen to be continuous with the one -dimensional

~~results whenL 3D a. ForL 3D>a, we again USe the one dimensional result.

rLD= ( bfor & <__ .

Hence, the three-dimenional analysis is appropriate only if the fragment
size is less than a. Otherwise, shattering is one -dimensional along the length

of th specimen. -Z3-
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III. ICE CRYSTAL BREAKUP

A) Deycription of the Model

As the fractured ice crystal passes through the vehicle shock

layer, it will break up and deform by che ar"or of the shock layer gas.

The deformation of the fragment cloud is studied in section IV. Iowever,

on a time scale small with respect to the cloud deformation time, ice

crystal breakup must be assessed in order to determine the appropriate

model for the fragment cloud. That is, does the fragment cloud behave as

a separate fluid, a two phase flow or as a fluidized bed?

To begin to answer this question. we see from Section 11-B that

the maximum velocity imparted to the solid particle is

a A a P
max E E

Since a - 3 kIm/sec. E -10 atm and P 103 atn-i (max), we obtain0 5

Um 30m/secmax

The expansion Mach number (relative to the gas) corresponding to U

would be 0. 1 upstream of the vehicle shock and 0. 01 downstream of the

shock. Hence, the expansion is much too slow to be thought of as an

"explosion". Rather, we think of it as a "convective separation" where the

crystal fragments separate with some characteristic velocity indicative of

the initial fracturing process. As the fragments separate, shock layer gas

will influx through the cracks as shown in Figure 8. The time scale for gas

to penetrate the fragment cloud is short compared to the time! required

\mbgppWm -25-"MnKPO
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for the fragment to respond dynrxically to the gas. In fact, the latter

time scale is the deformation tine and this is the distinction between

crystal breakup and cloud deformation.

As the gas penetrates through the cracks, the gas seeks pressure

equilibrium (VP "*0). However, the pressure difference across a frag-

ment is fL/P, which, if in excess of a will fracture the fragment. Con-l5

tinuous fracturing of the fragments would increase the surface/volume of

the solid and prevent further influx of gas. If the incoming gas achieves

pressure equilibrium within the fragment cloud before further fracturing

can occur, the fragment cloud must be treated as a two phase flow. How-

ever, if further fracturing prevents the gas from penetrating the fragment

cloud, the cloud may be thought of as a separate gas which deforms in

much the same way that a liquid drop deforms. In the following sections,

it is shown that the fragment cloud may be treated as a separate fluid which

deforms as a continuous medium.

B) Formulation of the Model

Investigating the stagnation region ot the fragment cloud, we assume

that the velocity of the fragments is radial with magnitude increasing linearly in r

U = (
r 0

00where R 0is the initial radius of the fragment cloud or ice crystal. If the

ttagncntr Urpn wihu ri4&%D%4b downA ~

r(t) = r(o) (I + - -R-
0



where r(o) is the ent coordinate r and r(t) is the coordinate of

the fragrmet that was initially at r. The porous volume within the frag-

ment cloud may be expressed as

V = ! IT r 3()).Tr r

p (3 3 41T

where 0 is the solid angle subtnded by the stagnation area. For

t-< < R Au
omax,

DaPt
' p ER

0

dV = A dr (8)

and, 30}a P tr
p ER

0

The equations of motion for the gas are written using a control volume

fixed to the fragments. It is assumed that the velocity of the fragments is

constant in time and small with respect to the gas velocity.

Gas Continuity:

d p " dV,
Or Ot )

C.att Momentum:

.(P udV + zo- uA) dr -A -drFdA NdA
pt p Or a

where F is the gas density, Z the gas velocity and p is the gas pressure.

The shear force between the fragments and the gas is denoted by F and the

-28-



normal pressure force is denoted by N.

To determine F, corsider the incompressible flow between parallel

plates separated by distance 2h

S= u (h y2 )/h2

where y is measured from the centerline, equidistant between the plates.

The average gas velocity u is related to utC by continuity

= u

The shear stress F is d'Atermined from

-4L 3uP_<by; h h
_- -h

where 4 is the gas viscosity.

To determine h(r,t), note that the porous volume per fragment is

6h 1 where £ is the fragment size. The number of fragments in volume

element or 2 dr is a r dr/ 1 3. Therefore, the porous volume element is

dV P = (6d)- (3~

Comparing to eq (8), we obtain h.

£a P~tOs
h = 0-

ZER
0

The surface area of each fragment is 61 2 . Thus, the net surface area in

volume element Ur 2dr is

dA 6?

-29-



and
36-u ER Or d

~~FdA -0...

: at

The normal presaure force N is

2
N P u sign (U).

Th normal surf~ce area associated with each fragment is 2hl. Thus,

or - --jrdrdn ( ;/

or 
a 0P tP u sign(u)Dr 2dr

;. NdA
n ZERA

Using V , A , FdA and NdA , the continuity and momentum equations
p p • n

become, respectively,

t 0 -- Z
( P ur ) + (tr) + 0 (9)

r

and
E-EZR 2 _ 2

-"Z 6u - 0i P u-
-r+ + a p i6.T sign I) u 0. (0)

0 5

The fragment size 1 appearing in eq. (10) is a time dependent quantity which is

yet to be determined. If we apply a pressure gradient across a 'ystal frag-

ment, that fragment will fracture when

r a.

The shattering theory indicates that the fragment will break into smaller
- 1/3

fragments of size (Cr / .O ) Ain a time scale of order J/a

-30-



1 1/3
Thorefore

61 Kt  0)
or

r a xl/3

Equations (9), (10) and (11) represent three equations in the four iMIkowns

P. u, p and 1. In the next two sections. they are solved by specifyingP in

the incompressible and sonic limits.

C) Incompressible Solution

In the incompressible limit, the continuity equation yields u,

u = - r/3t

and the momentum equation yields p (A, r, t)

bp 4U ER ozr 4P r -r2

r zp Zp 2 t 3  9t 2  + 5 t 2  12)

o s

Substititing r into the shattering relation, eq. (11), yields
Or

r 2'- "3

* 0 L -+ K_ C_ _ (13)
- A+ T 2 3

-31-



whee ° -( )1/3 R

:, = tI(l lao )

0 00

Pa R
R0y =Ry

=1 (5)1/3p Z/9 E 1 (54)/3 P5/9

1/3 C1/
K =24)

For the ice cyrstal/shock layer interaction problem, we are interested

in the following range of values.

4 5Rey I0 to 10

P = Oatrn to 103 atns

1 -Oatm
S

P -lOOP

E 105 atm

Figure 9 illustrates that our range of interest (cross hatched region) lies in

the do main where E 0 >> E VC 0o>> Kf ,' and Eo >>. Thus, for r near Ro,

equation (13) becomes

-32-
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O- + E + (14)
0

The nature of equation (14) depends on the size of E. For E << 1,

shattering will stop at some value of A near £ (shattering stops when0

6S
= 0 or when I = 0). However, for the case of interest, ( >>1)

the approximate solution to (14) is

AT

0

for 7S1 (A 0 for T> 1). Thus, continuous shattering at r R breaks0

the outer fragments into tinyfagments which will prevent further penetra-

tion by the shock layer gas.

To estimate the penetration distance of the shock layer gas, we

assume that the pressure gradient at r R is continuous over the penetra-

tion distance. 6.

6 P1 <~ <cR) (16)

From (15) and (12), the pressure gradient is expressed in terms of dimen-

sionless parameters previously defined.

- C3a
p Co 0 (r R)

3 2A T (j.T)

The penetration distance becomes

6 Ps 3 (j- )2

5
o 34.
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or 6 p
max a-

o 30a C
s o

For the range of parameters illustrated in Figure 9, 6 is much less
max

tha" 1 . Thus, the shock layer gas does not penetrate the fragment daid, and0

th-t fragment cloud may be treated as a separate gas or incompressible

fluid without surface tension.

D) Sonic Solution

The gas flux into the porous regions of the fragment cloud is more

likely to be sonic than incompressible. Rewriting the shattering equation

for = -u , we obtain

_C 3  P

DT 21 c ~ / (17)

where we assumed

- Pu u =
B

and

IZ (Rey 3 L /3( 1j~ /
iC

s lS

-4c
For u a and the range of parameters indicated in Section C), Figure 10

0

-- 3
illustrates that the C 2  term in eq. (17) i.s dominant.

6-3T C

-35-



1014

0
20 3- P .pQ 2 E i-3'P./6a'.=
Kj aK. tO0'--

R a/6

106 --

10 4 -

-1-.

lo t .. ..I 1 i 1

10 102 10 104  10 5

Ps -atm

Fig. 10 Ordering Of the Shattering
Equation (Sonic Flow)

-36-



J .F'or 2>> 1,

!~oo

1 10

and the pressure gradient is expressed as

br - .21T 2 18
0

The penetration depth of the shock layer gas is determined from eqs. (16)

and (18)

6 P "r21"rT)2

0 z(lT )

or
6 P

16C Z3

For the range of parameters indicated in figure 10, The shock
max o

layer gas does not penetrate the fragment cloud and the fragment cloud may

be treated as a separate gas or incompressible fluid without surface tension.

-
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IV. FRAGMENT CLOUD MOTION

A) Model For the Cloud Motion

The analysis of the ice crystal breakup indicates that we may

treat the fragment cloud as a liquid drop without surface tension. We

treat only the mean deformation of the cloud, and any consideration of aero-

dynamic strippini or catastrophic breakup is omitted. When a liquid drop

is out of dynamic equilibrium with a gas, the stagnation pressure will tend

to flatten the liquid drop, increase its drag area and cause it to accelerate

faster than a rigid particle. This effect would tend to slow down shattered

ice crystals that penetrate the shock layer of a hypersonic vehicle and

thereby help "shield" the vehicle from ice erosion.

To model this effect, we extend an approach used by Reinecke and

Waldman ( 5 ) in their rain drop studies. Writing the drop's momentum

equation lateral to the relative gas velocity, Reinecke and Waldman ( 5 ) use

a moment method to develop an equation for the lateral deformation. Assum-

ing that the lateral liquid velocity is linear in the lateral coordinate, they

obtain

+4CdT2 (P

f=fsjig WA 39



where

A R/R or DID
0 0

T =Ut 4 -

T= DO0

u = initial relative gas velocity

C = gas density/liquid density = P

Cp pressure coefficient at Raindrop Stagnation Point

The Reinecke and Waldnan approach is limited to times for which thy. rela-

- ive velocity u is approximately equal to its initial value u2 . Defining the

* dimensionless relative velocity v

U /U 2

we extend the Reinecke-Waldman equation to include a time dependent

relative wind

d2A
dA ( + 4C v( 19)
dT 2 + TV

and express the dynamics of u

P ITT R) d -Pu CD R
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or

dv (zA (20)
dT

A simultaneous solution to eqs. (19) and (20) is needed to determine the

slowdown and lateral spreading of the deforriable, incampressible drop.

B) Early and Late Time Solutions

To obtain a solution eqs. (19) and (20), it is natural to seek an

early time solution of the form

v - 4E v as E-0

A = +AC A as C -o

where

A = N T + constant (Reinecke-Waldrnan Result)

and

v =1.
0

Obtaining the next order term in v,

v=I-i l CT 3

v = '1- 4 -1CDC T3. .. .
2D p

we note that the expansion is singular when both T and A are 0 (C I/6

Rescaling the problem to "late time', we define

=C 1/6

1/6

r =C
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and the equations brwon-

iz

4= -+ 4C v 2
-z dE

dv 3D 21, (.2

d 2  kdS) 4C (21)

47 I4

The early time solution provides the initial conditions to (21) and (Z2).

r(0) =0 asC "0

dr

Numerical solutions for vZand are illustrated in Vi.gures 11 and

12 respectively. Over the time scaleS, a substantial deviation from

v = I is noted. The decrease in v is enhanced by the deformation of the

drop. This deformation causes the liquid drop to accelerate more rapidly

than a rigid particle.

I we imagine a shook tube experiment where a stationary liquid

drop is suddenly exposed to a relative wind u., the drop displacement

(xST) in the shock tube becomes

dxST = u -u 
(23)

L2

In the "Reinecke-Waldrnan Coordinate", we nondimensionalize to D o
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X ST ' ST /D0

Whereas in the premeft coordinates, X STis re-scaled by

ST ST

Eq. (23) become.s

dY5

A numerical solution of eq. (24) (coupled to (ZI) am,' %22) )is illustrated

in Figure 13. The results illua~rate a very rapid acceleration at small time.

Maing a sma~llE expansion of (21), (22) and (24), we obtain

and

ST 8 D p

Rescahang to the Reiriecke-Waldxnan coordinates

X -' C T 4

S T D p (Liquid Drops)

JI*whereas, for soid particles, we integrate eq. (20) with A 1.

XS T2I (Solid Particles)
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Thus, the acceleration of a liquid drop is significantly different from

that of a solid particle and the difference in demonstrated empirically in

Figure [4. Recent data of Reinecke and Waldman (1 1) together with that

(2) 4 -

of Engel closely follows the T curve except for XST > 10,where the

T4 results must yield to the numerical solution. Slightly smaller values

of C or CD would yield even better agreement with the data.

C) Application to Stagnation Point Erosion

Having developed a model for the dynamics of a deformable,

incompressible fragment cloud, we will now apply the theory co the stagna-

tion point of a hypersonic vehicle and determine the conditions under which

the shattering of the ice crystal into a fragment cloud will help shield the

vehicle from ice erosion.

Considering the stagnation point shock layer to be a static gas, the

penetration (x sp) of the fragment cloud into the shock layer may be written

as
dx

=dt

or
dY

8 = v. (25)

Coupling eqs. (25) to eqs. (21) and (23), numerical results are illustrated

in Figure 15. Figures 1 1 and 15 may be used to determine v(xsp ). At

x = A, the shock stand off distance, v represents vI, the relative velo-Xsp S5

city at impact, and v12 represents the relative kinetic energy at impact.
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2
To determine v1 for a solid particle, use Eq. (20) with 1 = (D = D 1.

0

dv D v2

dT "

Integration yields I 3CDj T)-l
::v 3 C T

and

x M 4 I 1 + 3CD CT)

0 D

At x p , v = vI , therefore

2
v I = exp (- 3 CDC - (Rigid Particles)

The relative impact kinetic energy of solid particles is compared

to thai of a fragment cloud of the same initial size in Fig. 16. The results

indicate that the smallest size fragment cloud that will not cause damage

to a hypersonic vehicle may be an order of magnitude greater than the

minimum tolerable rigid particle. A specific case t:-eated by Wu is

* I ilustrated in Fig. 17 and compared to the present results. Wu corn-

pared the results foi a rigid particle to that for the melting, vaporizing parti-

cle and showed that the critical size for causing damage waF above 1 i.

When ice crystal shattering is accounted for, the vehicle under coasideration

can tolerate up to 50 p diameter crystals. The -hielding effect obviously

increases rapidly with increasing nose radius. Consideration of fragment

-50-



cloud melting, vaporization, stripping and Taylor instability should

further increase the r.-'inirnum tolerable size ice crystal.

n
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V. CONCLUSIONS

The problem of ice crystal impact with a hypersonic vehicle has

bnm addressed. The conditions under which the ice crystal will fracture

at the vehicle shock have been determined. A dynamic fracture criterion.

which is subject to experimental verification, has been developed to deter-

mine the size and velocity of the crystal fragments. Using the initial frag-

ment size and velocity from the model for dynamic fracture, it has been

shown that the outer fragments continue to fracture and prevent the shock

layer gas from penetrating the fragment cloud. Thus, the fragment cloud

may be treated as a separate incompressible fluid without surface tension.

The dynamics of the fragment cloud is then modeled by extending the

Reinecke-Waldman (5 ) model for liquid drop deformation. The lateral

snreading of the fragment cloud may significantly reduce the ice crystals

impact velocity on the hypersonic vehicle. It is shown that the minimum

tolerable fragment cloud may be an order of magnitude greater in size than

the minimum tolerable rigid particle impacting the vehicle along the same

stagnation point trajectory. Thus, the fracturing of the ice crystals at the

vehicle shock may significantly reduce the erosion of the vehicle.
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